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We consider coherent exciton transport modeled by continuous-time quantum walks on long-range interact-
ing cycles �LRICs�, which are constructed by connecting all the two nodes of distance m in the cycle graph.
LRIC has a symmetric structure and can be regarded as the extensions of the cycle graph �nearest-neighboring
lattice�. For small values of m, the classical and quantum return probabilities show power law behavior p�t�
� t−0.5 and ��t�� t−1, respectively. However, for large values of m, the classical and quantum efficiency scales
as p�t�� t−1 and ��t�� t−2. We give a theoretical explanation of this transition using the method of stationary
phase approximation. In the long time limit, depending on the network size N and parameter m, the limiting
probability distributions of quantum transport show various patterns. When the network size N is an even
number, we find an asymmetric transition probability of quantum transport between the initial node and its
opposite node. This asymmetry depends on the precise values of N and m. Finally, we study the transport
processes in the presence of traps and find that the survival probability decays faster on networks of large m.
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I. INTRODUCTION

In the past few years there has been a growing interest in
continuous-time random walks �CTRWs� �1–3�. The particu-
lar surge of increasing interest can be partly attributed to its
close connection with the classical diffusion modeled by the
tight-binding model in condensed matter �4�. The quantum
mechanical analog of the classical diffusion process defined
on complex networks has also been studied with respect to
the localization delocalization transition in the presence of
site disorder �5�. In the literature, there are two main types of
quantum walks: continuous-time and discrete-time quantum
walks �6�. Discrete-time quantum walks evolve by the appli-
cation of a unitary evolution operator at discrete time inter-
vals, and continuous-time walks evolve under a time-
independent Hamiltonian �2�. It has been shown that on
some graphs, propagation between two properly chosen
nodes is exponentially faster in the quantum case �7�. In this
respect, quantum walks provide a good framework for the
design of quantum algorithms in the application of quantum
computation �8�.

Here, we focus on continuous-time quantum walks
�CTQWs�. Previous works have studied CTQWs on some
particular graphs, such as the line �9,10�, cycle �11�, hyper-
cube �12�, Cayley tree �13,14�, dendrimers �15�, and other
regular networks with simple topology �16,17�. In Ref. �18�,
the authors studied the coherent exciton dynamics on dis-
crete rings under long-range step lengths distributed accord-
ing to R−� ���2�. The strength of the long-range interaction
is a power law decay of the distance of the nearest-
neighboring lattice. They find that the long-range interactions
give no influence to the efficiency of the coherent exciton
transport �18�.

In this paper, we study the effect of long-range interac-
tions on a new network model, namely long-range interact-

ing cycles �LRICs�. LRICs are constructed by connecting all
the two nodes of distance m in the cycle graph �nearest-
neighboring lattice�. Therefore the network model has a sym-
metric structure and can be regarded as the extensions of the
cycle graph �nearest-neighboring lattice�. The newly added
edges with large m are long-range interactions and serves as
shortcuts in the nearest-neighboring cycle graph. A detailed
description of the network structure will be given in the next
section.

Since the structure of LRICs is completely symmetrical as
the nearest-neighboring cycle graph, we are able to analyti-
cally predict the dynamical behavior of the coherent and in-
coherent transport. The paper is organized as follows: In Sec.
II we give a description to the structure of LRICs. In Sec. III,
we briefly review the properties of CTQWs on general
graphs. In Sec. IV, we derive analytical results for LRICs and
study the efficiency of the classical and quantum transport by
considering the scaling of the return probability. Long time
averages of the transition probabilities are also studied in this
section. In Sec. V, we study trapping process on LRICs. Con-
clusions and discussions are given in the last part, Sec. VI.

II. TOPOLOGY AND STRUCTURE OF LRICS

Long-range interacting cycles �LRICs� can be constructed
as follows: First, we construct a cycle graph of N nodes
where each node connected to its two nearest-neighbor
nodes. Second, two nodes of distance m in the cycle graph
are connected by additional bonds. We continue the second
step until all the two nodes of distance m have been con-
nected. Hence the LRICs, denoted by G�N ,m�, are charac-
terized by the network size N and long-range interaction pa-
rameter m. LRIC is a one-dimensional lattice with periodic
boundary conditions and all nodes of the networks have four
bonds. The structure of G�10,2� and G�10,3� is illustrated in
Fig. 1.

It is interesting to note that all the LRICs have the same
value of connectivity k=4 and the parameter m adjusts the*xuxp@mail.ihep.ac.cn
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interaction range of the cycles, thus LRICs provide a good
facility to study the effects of long-range interaction on the
transport dynamics.

III. COHERENT EXCITON TRANSPORT ON GENERAL
GRAPHS

The coherent exciton transport on a connected network is
modeled by the continuous-time quantum walks �CTQWs�,
which is obtained by replacing the Hamiltonian of the system
by the classical transfer matrix, i.e., H=−T �13,19�. The
transfer matrix T relates to the Laplace matrix by T=−�A,
where for simplicity we assume the transmission rates � of
all bonds to be equal and set ��1 in the following
�13,19,20�. The Laplace matrix A has nondiagonal elements
Aij equal to −1 if nodes i and j are connected and 0 other-
wise. The diagonal elements Aii equal to degree of node i,
i.e., Aii=ki. The states �j� endowed with the node j of the
network form a complete, orthonormalized basis set, which
span the whole accessible Hilbert space. The time evolution
of a state �j� starting at time t0 is given by �j , t�=U�t , t0��j�,
where U�t , t0�=exp�−iH�t− t0�� is the quantum mechanical
time evolution operator. The transition amplitude �k,j�t� from
state �j� at time 0 to state �k� at time t reads �k,j�t�
= 	k�U�t ,0��j� and obeys Schrödingers equation �15,19,20�.
Then the classical and quantum transition probabilities to go
from the state �j� at time 0 to the state �k� at time t are given
by pk,j�t�= 	k�e−tA�j� and �k,j�t�= ��k,j�t��2= �	k�e−itH�j��2
�13,19�, respectively. Using En and �qn� to represent the nth
eigenvalue and orthonormalized eigenvector of H, the clas-
sical and quantum transition probabilities between two nodes
can be written as �13,15,19,20�

pk,j�t� = 

n

e−tEn	k�qn�	qn�j� , �1�

�k,j�t� = ��k,j�t��2

= �

n

e−itEn	k�qn�	qn�j��2

= 

n,l

e−it�En−El�	k�qn�	qn�j�	j�ql�	ql�k� . �2�

For finite networks, �k,j�t� do not decay ad infinitum but
at some time fluctuates about a constant value. This value is
determined by the long time average of �k,j�t� �19,20�

�k,j = limT→�

1

T
�

0

T

�k,j�t�dt

= 

n,l

	k�qn�	qn�j�	j�ql�	ql�k�limT→�

1

T
�

0

T

e−it�En−El�dt

= 

n,l

�En,El
	k�qn�	qn�j�	j�ql�	ql�k� , �3�

where �En,El
takes value 1 if En equals to El and 0 otherwise.

Generally, to calculate pk,j�t�, �k,j�t� and �k,j all the eigen-
values En and eigenvectors �qn� are required. For some regu-
lar graphs, the eigenvalues and eigenvectors can be analyti-
cally obtained. In the following section, we find analytical
results of the eigenvalues and eigenstates for LRICs, and
calculate these quantities according to the above equations.

IV. COHERENT TRANSPORT ON LRICS

A. Analytical results

In the subsequent calculation, we restrict our attention on
the graph of long-range interacting cycles �LRICs�. The net-
work organizes in a very regular manner and has a periodic
boundary condition. The Hamiltonian matrix H of G�N ,m�
�m�2� takes the following form:

Hij = 	i�H�j� = 
4, if i = j ,

− 1, if i = j 	 1,

− 1, if i = j 	 m ,

0, otherwise,
� �4�

and the Hamiltonian acting on the state �j� can be written as

H�j� = 4�j� − �j − 1� − �j + 1� − �j − m� − �j + m� . �5�

The above equation is the discrete version of the Hamil-
tonian for a free particle moving on the cycles. Using the
Bloch function approach for the periodic system in solid
state physics �21�, the time independent Schrödinger equa-
tion reads

H�
n� = En�
n� . �6�

The Bloch states �
n� can be expanded as a linear combina-
tion of the states �j� localized at node j,

�
n� =
1

�N


j=1

N

e−i�nj�j� . �7�

Substituting Eqs. �5� and �7� into Eq. �6�, we obtain the ei-
genvalues �or energy� of the system,

En = 4 − 2 cos �n − 2 cos�m�n� . �8�

The periodic boundary condition for the network requires
that the projection of the Bloch state on the state �N+1�
equals to that on the state �1�, thus �n=2n� /N with n integer
and n� �1,N�. Replacing �qn� by the Bloch states �
n� in Eqs.

FIG. 1. Long-range interacting cycles G�10,2� �a� and
G�10,3� �b�.
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�1�–�3�, we can get the classical and quantum transition
probability

pk,j�t� =
1

N



n

e−tEne−i�k−j�2n�/N, �9�

�k,j�t� = ��k,j�t��2 = � 1

N



n

e−itEne−i�k−j�2n�/N�2

, �10�

and the long time averages of �k,j�t� is given by

�k,j =
1

N2

n,l

�En,El
e−i�k−j��n−l�2�/N. �11�

Interestingly, when k= j, the transition probability is re-
duced to the return probability, which means the probability
of finding the exciton at the initial node. In Ref. �22�, the
authors use the return probability to quantify the efficiency
of the transport. In the next subsection, we will analyze re-
turn probability and try to compare the efficiency between
the classical and quantum transport. For our regular cycles,
the return probability is independent on the initial node. The
average return probability can be written as

p�t� =
1

N



j

pj,j�t� =
1

N



n

e−tEn, �12�

and

��t� =
1

N 
 � j,j�t� = �� j,j�t��2 = ��̄�t��2 = � 1

N



n

e−itEn�2

.

�13�

Equations �12� and �13� hold for finite networks. For infinite
networks, i.e., N→�, the � values are quasicontinuous in
Eq. �8�. In the continuum limit, on one hand, the eigenvalues
of Eq. �8� can be rewritten as

Em��� = 4 − 2 cos � − 2 cos m� . �14�

On the other hand, the classical and quantum return prob-
abilities in Eqs. �12� and �13� can be written as the following
integral form:

pm�t� =
1

2�
�

0

2�

exp�− tEm����d� , �15�

and

�m�t� = ��̄�t��2 = � 1

2�
�

0

2�

exp�− itEm����d��2

. �16�

Figure 2 shows Em��� vs � for m=2 �a� and m=10 �b�. We
note that Em��� is an oscillatory function, and there are more
regular oscillations for large values of m. The number of
maxima �or minima� of Em��� in the range �0,2�� is m. As
we will show, these extreme points give contributions to the
integrals when we calculate the classical and quantum effi-
ciency in Eqs. �15� and �16�.

B. Efficiency and scaling of the classical and quantum
transport

In this subsection, we consider the efficiency of the clas-
sical and quantum transport. We calculate the integrals of
Eqs. �15� and �16� using the stationary phase approximation
�SPA� �see Appendix A�. We find that the classical and quan-
tum return probabilities show different scaling behavior for
small values and large values of m.

For small values of m, we get an asymptotical expression
for the classical pm�t�,

pm�t� �
1

2m��t
� t−0.5 �17�

�see the derivation in Appendix B�. For large values of m, we
also get an approximate result �see Appendix B�,

pm�t� �
1

4�t
� t−1. �18�

We note that pm�t� scales as t−0.5 for small values of m, how-
ever, for large m, the scaling becomes as pm�t�� t−1.

Quantum mechanically, we also find different scaling be-
havior of �m�t� for small values and large values of m. For
small values of m, �m�t� is an oscillatory function multiplied
by 1 / t �see Eq. �C1� in Appendix C for m=2�. For large
values of m, there is an approximate result given by Eq. �C8�
in Appendix C,

�m�t� �
sin2 4t

4�2t2 � t−2. �19�

Therefore quantum transport of small m displays the same
scaling behavior ��t�� t−1 while transport of large m shows
scaling ��t�� t−2. It is interesting to note that, both for the

FIG. 2. �Color online� Eigenvalues Em��� vs � for m=2 �a� and
m=10 �b�. For m=2, there are two maxima and minima in �0,2��,
which are indicated by the arrows in plot �a�. For m=10, there are
ten maxima and minima in �0,2��, and the maximal and minimal
points are indicated as Emax��� and Emin��� �see dashed curves in
�b��.
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classical and quantum transport, the scaling exponent for
large m is twice the exponent for small values of m. This is
one of the main conclusions in this paper.

In order to test the theoretical predictions, Fig. 3 shows
the classical and quantum return probabilities for LRICs of
N=10 000 with m=2, m=10, and m=100. Figure 3�a� shows
the classical return probability. We note that p2�t� and p10�t�
displays the same scaling t−0.5, but for m=100 the scaling
becomes p100�t�� t−1. The results are in good agreement with
the analytical predictions of Eqs. �17� and �18�. Figure 3�b�
shows the quantum �m�t� for m=2 and the analytical predic-
tion of Eq. �C1� in Appendix C. Both the results exhibit
power law �2�t�� t−1. The same scaling behavior �t−1� is also
observed for m=10 �see Fig. 3�c��. In Fig. 3�d�, we show
�100�t� and the analytical result predicted by Eq. �19�. Both
the results display the same scaling t−2.

C. Long time averages on finite networks

In this section, we consider the long time averaged tran-
sition probabilities on finite networks. Classically, the long

time liming probabilities equal to the equip-partitioned prob-
ability 1 /N �23�. Quantum mechanically, the long time aver-
ages of the transition probabilities does not lead to equip-
partition. For LRICs, the long-time averaged probability is
determined by Eq. �11� but the distribution patterns are com-
plex for different network parameters N and m. For the cycle
graph �nearest-neighboring lattice�, the limiting probability
distribution depends on the parity of the network size N.
Figure 4 shows the distribution patterns of the limiting tran-
sition probability on networks of N=100 with various values
of m. The initial excitation is located at node 1. As we can
see, there are high probabilities to find the exciton at the
initial node 1 and the opposite node 51, this feature is a
natural consequence of the periodic boundary condition of
the graphs �20�. For odd-numbered networks N�odds, there
is a higher probability to find the excitation at the initial node
than that at other nodes �20�. Figure 5 shows the distribution
patterns for networks of N=75 with various m. The patterns
depend on the specific network parameters and there are high
probabilities to find the exciton at some particular nodes. We
also note that the patterns of �k,1 are the same for some
different values of m, this feature can be explained by the
identical degeneracy distribution of the eigenvalues for dif-
ferent values of m �20�.

It is worth mentioning that for even-numbered networks,
there are high probabilities to find the exciton at the initial

FIG. 3. �Color online� Return probability pm�t� and �m�t� for
different values of m. �a� Classical return probabilities pm�t� for m
=2, m=10, and m=100. The black curves are exact results obtained
according to Eq. �12�, dark yellow curves �thick curves� are the
analytical results obtained using stationary phase approximation
�SPA� �see Eqs. �B4� and �B6� in Appendix B�. �b� Quantum return
probability �2�t�. The solid curve is the exact result and the dashed
curve is the analytical result obtained using stationary phase ap-
proximation �see Eq. �C1� in Appendix C�. �c� �10�t� vs t. The solid
curve is the exact result and the dotted line is the power law t−1. �d�
�100�t� vs t. The solid curve is the exact result and the dashed curve
is analytical prediction according to Eq. �19�. All the exact results
are obtained from LRICs of size N=10 000.

FIG. 4. Long-time averaged probability distribution �k,1 for
CTQWs on networks of size N=100 with different values of m.
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node and opposite node. For networks of N=100, we find the
two probabilities are exactly equal to each other for all the
values of m, i.e., �1,1=�51,1. However, for some other even-
numbered network size N, this is not true �20�. For some
particular values of N and m, for instance N=108 and m=2,
the probability of finding the exciton at the initial node dif-
fers from the probability of the finding the exciton at the
opposite node. Such asymmetry is small and not easy to be
observed from the limiting probability distributions �20�. To
detect such asymmetry of the probabilities, we define the
quantity ��1,N /2����1,1−�N/2+1,1� / ��1,1+�N/2+1,1� as a
function of the network size N for different values of m �20�.
The asymmetry is indicated by the nonzero of this quantity
while ��1,N /2�=0 corresponds to identical values of �1,1
and �N/2+1,1. A plot of ��1,N /2� vs N for m=2, m=3, and
m=4 are shown in Fig. 6. We find that the points break into
several clusters, whereas some clusters ��1,N /2� decreases
with the network size N as a power law: ��1,N /2��N−1

�20�.
As we have shown in Fig. 6, the asymmetry appears at

some particular values of N and m. However, we are unable
to predict which particular parameters of N and m are related
to such asymmetry. This is an interesting issue and similar
phenomena is also found in Ref. �20�.

V. TRAPPING ON LRICS

An important process related to random walk is trapping
�24,25�. Trapping problems have been widely studied in the
frame of physical chemistry, as part of the general reaction-
diffusion scheme �26�. Previous work has been devoted to
the trapping problem on discrete-time random walks �27,28�.
However, even in its simplest form, trapping was shown to
yield a rich diversity of results, with varying behavior over
different geometries, dimension, and time regimes �28�. The
main physical quantity related to trapping process is the sur-
vival probability, which denotes the probability that a par-
ticle survives during the walk in a space with traps.

In this paper, we consider trapping using the approach
based on time dependent perturbation theory and adopt the
methodology proposed in Ref. �29�. In Ref. �29�, the authors
consider a system of N nodes and among them M are traps
�M N�. The trapped nodes are denoted them by m, so that
m�M. The new Hamiltonian of the system is H=H0+ i�,
where H0 is the original Hamiltonian without traps and i� is
the trapping operator. � has m purely imaginary diagonal
elements �mm at the trap nodes and assumed to be equal for
all m ��mm���0�. See Ref. �29� for details. The new
Hamiltonian is non-Hermitian and has N complex eigenval-
ues and eigenstates �El , ��l�� �l=1,2 , . . . ,N�. Then the quan-
tum transition probability is

�k,j�t� = ��k,j�t��2 = �

l

e−itEl	k��l�	�̃l�j��2
, �20�

where 	�̃l� �l=1,2 , . . . ,N� is the conjugate eigenstates of the
new Hamiltonian. In order to calculate �k,j�t�, all the com-
plex eigenvalues and eigenstates �El , ��l�� �l=1,2 , . . . ,N�
are required. Here, we numerically calculate �k,j�t� by diago-
nalizing the Hamiltonian H using the standard software
package MATHEMATICA 5.0.

Equation �20� depends on the initially excited node j. The
average survival probability over all initial nodes j and all
final nodes k, neither of them being a trap node, is given by

�M�t� =
1

N − M



j�M



k�M
�k,j�t� . �21�

FIG. 5. Quantum mechanical limiting probabilities �k,1 on net-
works of size N=75 with different values of m.

FIG. 6. �Color online� ��1,N /2����1,1−�N/2+1,1� / ��1,1

+�N/2+1,1� as a function of the network size N for different values of
m. The solid line indicates the power law decay ��1,N /2��N−1.
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For continuous-time random walks �CTRWs�, we induce
trapping analogously as the CTQWs, where the new transfer
matrix is modified by the trapping matrix as T=T0−�. The
mean survival probability analogous to Eq. �21� is PM�t�
= 1

N−M 
 j�M
k�Mpk,j�t� �29�.
Figure 7 shows the quantum and classical survival prob-

abilities on LRICs of N=100 with m=2, m=5, and m=10.
Five trapped nodes are randomly selected from all the nodes
and �=1 is fixed in the numerical calculation. For each spe-
cific trapping configuration, we calculate the survival prob-
ability and average it over different configurations. As we
can see from Fig. 7, both the quantum and classical survival
probabilities decays fast on LRICs with large values of m.
This is opposite to the case in Ref. �30� where long-range
interaction leads to a slower trapping of the excitation.

VI. CONCLUSIONS AND DISCUSSIONS

We have studied coherent exciton dynamics modeled by
continuous-time quantum walks �CTQWs� on long-range in-
teracting cycles �LRICs�. We have shown that both the effi-
ciency of the classical and quantum transport display power
laws, and the exponents for LRICs with large values of m are
twice the exponents of LRICs with small values of m. The-
oretical calculation of the return probability using stationary
phase approximation supports this finding. In the long time
limit, the limiting probability distributions of quantum trans-
port show various patterns on finite size networks. When the
network size N is an even number, we find an asymmetric
transition probability between the initial node and its oppo-
site node. This asymmetry depends on the precise values of
N and m. Finally, we study trapping process on LRICs and
find that long-range interaction �large m� leads to a fast de-
cay of the survival probability.

It is worth mentioning that the return probability displays
different scaling behavior for small values and large values
of m. However, we did not give a quantitative relation be-
tween the scaling exponent and the parameter m. We only
know the scaling behavior for the thresholds of small and

large m, the scaling behavior in the medial region of m is still
unknown. In addition, the limiting probability distributions
show various patterns on finite size networks. These patterns
is a natural result of the interference phenomena in coherent
transport on finite systems. The asymmetry of the limiting
probability on even-numbered networks is also an interesting
and strange feature of quantum walks, which deserves our
further investigation �23,31�. The long-range interaction in
LRICs leads to a fast exciton trapping and is opposite to the
conclusions in Ref. �30�. We also note that the quantum re-
turn probability in Ref. �18� scales the same behavior ��t�
� t−1 for various long-range interactions ���2�. The differ-
ent behavior of trapping and transport efficiency may be
caused by the distinct type of long-range interactions.

Note added in proof. A relevant publication about LIRCs
has come to our attention �33�. The authors studied synchro-
nizability on LRICs and found that long-range interactions
lead to better synchronizability.
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APPENDIX A: THE STATIONARY PHASE
APPROXIMATION (SPA)

Stationary phase approximation �SPA� is an approach for
solving integrals analytically by evaluating the integrands in
regions where they contribute the most �10,18,32�. This
method is specifically directed to evaluating oscillatory inte-
grands, where the phase function of the integrand is multi-
plied by a relatively high value. Suppose we want to evaluate
the behavior of function I��� for large �,

I��� =
1

2�
� e−�f�x�dx . �A1�

The SPA asserts that the main contribution to this integral
comes from those points where f�x� is stationary �df�x� /dx
� f��x��0�. If there is only one point x0 for which f��x0�
=0 and d2f�x� /dx2 �x0� f��x0��0, the integral is approxi-
mated asymptotically by

I��� �
1

�2��f��x0�
e−�f�x0�. �A2�

If there are more than one stationary points satisfy
�df�x� /dx� f��x��0�, then the integral I��� is approxi-
mately given by the sum of the contributions �each being of
the form given in Eq. �A2�� of all the stationary points �18�.

APPEDNIX B: CALCULATION OF THE CLASSICAL pm(t)
USING SPA

We apply SPA to calculate the classical pm�t� in Eq. �15�.
The stationary points of this integral satisfy Em� ���=2 sin �

FIG. 7. �Color online� Survival probabilities �M�t� and PM�t�
for LRICs of N=100 and different values of m. In the calculation,
five trap nodes are randomly selected from the cycles and we set
�=1. The curves are averaged over distinct trapping realizations.
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+2m sin m�=0. The number of stationary points equals 2m
�m maxima and m minima, see Fig. 2� in the range �
� �0,2��. We denote m maxima stationary points as �i

max

�i=1,2 , . . . ,m� and m minima stationary points as �i
min �i

=1,2 , . . . ,m�. Then the integral of Eq. �15� yields

pm�t� � 

i=1

m
1

�2�tEm� ��i
min�

e−tEm��i
min�

+ 

i=1

m
1

�2�tEm� ��i
max�

e−tEm��i
max�, �B1�

which is mainly determined by the small values of Em��i�.
Considering Em��min��4Em��max�, contributions from the
maximal stationary points in the above equation is negli-
gible. Therefore pm�t� can be simplified as

pm�t� � 

i=1

m
1

�2�tEm� ��i
min�

e−tEm��i
min�. �B2�

For small values of m, the global minimum Em��� at �
=0 is sufficiently separated from �smaller than� other local
minima. The sum in Eq. �B2� is mainly from the contribution
at the global minimum �=0, thus

pm�t� �
1

�2�tEm� �0�
e−tEm�0�. �B3�

Substituting the relation �Em� �����=0=2+2m2 and Em�0�=0
into Eq. �B3�, we get

pm�t� �
1

�4�t�1 + m2�
�

1

2m��t
� t−0.5. �B4�

For large values of m, the global minimum Em��� at �
=0 is not sufficiently separated from �smaller than� other
local minima. The sum in Eq. �B2� contains contributions
from all the minimal stationary points. Noting that for large
values of m, the stationary points �i

max and �i
min are approxi-

mately equidistant, i.e., �i
min�2�i−1�� /m, �i

max��2i
−1�� /m �i=1,2 , . . . ,m�. Therefore we get the approxima-
tions Em� ��min��2m2, Em� ��max��−2m2. Thus Eq. �B2� can be
written as

pm�t� �
1

2��t
��t� , �B5�

where ��t�� 1
m
i=1

m e−tEm��i
min�. In the continuum limit of large

m, ��t� equals the integral 1
2��0

2�e−tEmin���d�, where Emin���
=2−2 cos � �see the dashed curves in Fig. 2�b��. We apply
the method of SPA again to evaluate this integral and find
that the contribution is mainly from the stationary point �
=0, which lead to ��t�� 1

2��t
. The classical pm�t� of Eq. �B5�

transforms into

pm�t� �
1

4�t
� t−1. �B6�

APPENDIX C: CALCULATION OF THE QUANTUM �m(t)
USING SPA

We calculate the integral of quantum return probability in
Eq. �16�. We also find the integral displays different scaling
behavior for small values and large values of m.

For small values of m, we consider the case m=2, where
there are four stationary points: �1

min=0, �2
min=�, �1

max

=arccos�−1 /4�, �2
max=2�−arccos�−1 /4� �see Fig. 2�a��. The

second-order derivations at these points yield E���1
min�=10,

E���2
min�=6, and E���1

max�=E���2
max�=−15 /2. The corre-

sponding spectral eigenvalues at the four points are E��1
min�

=0, E��2
min�=4, and E��1

max�=E��2
max�=25 /4. Using the

method of SPA, we obtain the integral of Eq. �16� for m=2
as

�2�t� = � 1

2�
�

0

2�

exp�− itEm����d��2

� � 1
�2�it · 10

e−it·0

+
1

�2�it · 6
e−it·4 +

1
�2�it · �− 15�/2

e−it·25/4�2

�
1

30�t
�12 + �15 cos 4t − 4�5 sin 9t/4

− 4�3 sin 25t/4� � t−1. �C1�

Therefore the quantum mechanical efficiency scales as
�2�t�� t−1 for m=2. For other small values of m, the calcu-
lation is analogous. The result is also an oscillatory function
multiplied by 1 / t. This suggests that the quantum transport
of small m displays the same scaling behavior ��t�� t−1.

For the case of large m, the integral of Eq. �16� comes
from 2m stationary points,

�m�t� � �

i=1

m
1

�2�itEm� ��i
min�

e−itEm��i
min�

+ 

i=1

m
1

�2�itEm� ��i
max�

e−itEm��i
max��2

� � 1

2��it
·

1

m


i=1

m

e−itEm��i
min�

+
1

2�− �it
·

1

m


i=1

m

e−itEm��i
max��2

, �C2�

where in the last approximation Em� ��max��−2m2 and
Em� ��min��2m2 is applied. In the continuum limit of m→�,
the sum in the above equation can be written as the integral
form,

1

m


i=1

m

e−itEm��i
min� =

1

2�
�

0

2�

exp�− itEmin����d� , �C3�

and
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1

m


i=1

m

e−itEm��i
max� =

1

2�
�

0

2�

exp�− itEmax����d� . �C4�

Noting that Emin���=2−2 cos � and Emin���=6−2 cos � �see
the dashed curves in Fig. 2�b��, Eq. �C2� can be rewritten as

�m�t� � � 1

2��it

1

2�
�

0

2�

exp�− it�2 − 2 cos ���d�

+
1

2�− �it

1

2�
�

0

2�

exp�− it�6 − 2 cos ���d��2

.

�C5�

For the two integrals in the above equation, we apply SPA
again and find that the contribution of this integral is mainly
from two stationary points �=0 and �=�. Thus

1

2�
�

0

2�

exp�− it�2 − 2 cos ���d� �
1

2��it
+

1

2�− �it
e−4it,

�C6�

and

1

2�
�

0

2�

exp�− it�6 − 2 cos ���d�

�
1

2��it
e−4it +

1

2�− �it
e−8it. �C7�

Substituting these relations into the Eq. �C5�, we get

�m�t� �
sin2 4t

4�2t2 � t−2. �C8�
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